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Abstract: This chapter examines how social components of robot and agent technology, 
combined with learning theories and methodologies, can develop powerful learning 
partnerships. Exploring ways to leverage the affordances of technology as peers and 
learning tools, can provide teachers with useful information to identify features and 
conditions for learning. This in turn can help design activities using pedagogical 
robots/agents to assist collaboration with and between students.  
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Introduction and Scope 
As many broad definitions for collaborative learning exist, this chapter sees collaborative 
learning as a “...situation in which two or more people learn or attempt to learn something 
together” (Dillenbourg, 1999, p.1). This act of learning something together can relate to 
course content knowledge (e.g., mathematics, biology) or acquiring skills to perform 
learning activities (e.g., problem solving, reasoning skills, self-reflection). “Two or more 
people” can imply a pair, a small group, a class, a community, or all other intermediate 
levels, but much of the work introduced in this chapter, will involve collaborative learning 
between a pair (dyads) and a small group of people (triads). The chapter will focus beyond 
content knowledge, and examine the learning mechanisms that emerge from such 
collaborative processes and the role of robots and agents in supporting these processes. 
Collaborative processes are often complex, with both social and cognitive processes 
circulating and feeding into one another (Perret-Clermont, Perret, & Bell, 1991).  Studying 
and identifying the practices that research indicates are successful can inform teachers 
about the affordances of robots and agents for supporting collaborative learning, as well 
as potential pedagogical risks when using these technologies. We argue that it is 
essential to understand the possibilities and the limits of technology-rich collaborative 
learning environments in order to design instruction that can support learning. Practice 
needs to be well grounded in theory to facilitate the exploration of how or why things work 
(Gomez & Henstchke, 2009) to ensure that learning trajectories are clear and robust for 
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the classroom. This chapter does not reflect on advanced social and institutional factors, 
such as leadership and social norms, which may appear in large collaborative groups.  
 

History and Development 
A Brief Background of Robot and Agents in Education 

Applying technology to educational content and pedagogy is not new. People have had 
high hopes for technology restoring personalized instruction as far back as Pressey's 
Testing Machine (Pressey, 1932) and Skinner’s Teaching Machine (Skinner, 1986). 
Expert systems have been successful in their intended domain, but often evaluated 
unfairly because of the high expectations of the Turing Test (Hayes & Ford, 1995). 
Interestingly, much of the “learning” focused on programmed instruction and machine 
learning, where robot intelligence and expert systems guided or modeled human problem 
solving. Human behavioral models implemented into the system improved the quality of 
social interactions between humans and machines (e.g., conversational agents, 
intelligent tutoring systems). As a result technology was used to implement well-known 
teaching and tutoring strategies, but detecting the thought processes of children turned 
out to be quite difficult as it involved human learning, rather than machine learning. Early 
computerized automated instructions included teacher-student dialogues that asked 
questions to elicit responses. Frameworks such as Bloom’s Taxonomy were used as a 
way to ask questions that required higher-order thinking processes to answer (Stevens & 
Collins, 1977). However, little evidence was found to support the correlation between 
higher-order questions and student achievement (Winne, 1979). Technological tools still 
seem to fall short when dealing with unfamiliar content.  

The transition of technologically simple and single-minded artifacts to sociable, 
adaptable, and intelligent ones can pose controversies and open questions. Some of 
these controversies are decades old, but are still very much alive and well.  Back when 
Skinner’s Teaching Machine was first introduced, there was the fear that teachers would 
be replaced by machines.  The role of the machines and the principles on which these 
teaching machines were based were misunderstood, which led to anxiety and high 
expectations that students would learn twice as fast. Today, we still see headlines in the 
media that say “Are robots going to replace teachers?” “Are robots going to be smarter 
than humans?” Back then and now, it appears that the role of machines and the principles 
on which these tools are based may continue to be misunderstood. 

Recent advancements in digital manipulatives and technological artifacts (e.g., 
programmable building bricks) have helped expand the range of concepts children can 
explore with different robotic systems and machine platforms (Resnick, Berg, & 
Eisenberg, 2000). Robotics is an integrative discipline that brings together basic math, 
science, applied engineering, and computational thinking. Preparing pre-service teachers 
to teach STEM using robotics has been suggested as a promising way to improve 
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students’ experience of, and attainment in, science and mathematics. Modern robotic 
construction kits provide learning environments in which children can use their hands to 
touch and build concrete objects using familiar materials such as gears, motors, sensors, 
and computer-generated interfaces to program their creations (Bers, Ponte, Juelich, 
Viera, & Schenker, 2002; Resnick & Kafai, 1996). Cubetto, by Primo Toys, is another 
example in which a wooden robot is designed to teach children basic principles of coding 
using a tangible programming language (Bers & Horn, 2010). Influenced by the earlier 
work of Seymour Papert's LOGO (Papert, 1980) and Turtle Graphics, Cubetto uses a 
hands-on programming language to control a wooden robot that roams the checkerboard 
and completes clearly defined tasks. Students are less exposed to think about the social 
aspects of human-computer interactions (HCI), which is somewhat ironic, as more 
interest has been placed on the social effects of technology on human learning and 
behavior. Advancements in technology have enabled sensory technology to detect 
human behavior (e.g., physiological sensors, facial and voice recognition) and improve 
interaction between humans and machines for collaborative tasks (e.g., building and 
moving objects). 

Another question that comes to mind is how agents and robots are similar and/or 
different from one another. One common feature between “Agents,” “Robots,” and 
“Collaborative learning” is the wide variety of usage of these terms in different fields (e.g., 
cognitive psychology, artificial intelligence, social sciences), and variation in the degree 
of function and capability. While some agents and robots may be equipped with elaborate 
skills (e.g., have goals and knowledge, make decisions), others may have elementary 
skills (e.g., grammatical parser agent) and work in large numbers. Dillenbourg (1999) 
describes agents as a functional unit inside a system. Agents can have different skills and 
vary in number, representation, goals, and knowledge. Agents do not have to be 
autonomous or intelligent to impact learning; interactions with low functional units can 
also bring about interesting phenomena. On the other hand, robots can be seen as a 
physical platform with a system full of functional units that direct its behavior. These 
functional units can consist of multiple agents programmed to control humanoid robots to 
interact with, and respond to, a precise sequence of stimuli or systematic patterns. Robots 
may have more functional units within their system than agents, as they are not confined 
to a computer screen and have a physical presence, can take action, and manipulate 
objects in the real world. 
 

State of the Art 
Robots and Agents as Collaborative Learning Partners 
The collaborative partner in learning has expanded from a human peer to include a virtual 
representation (agent) or a robotic peer. Advances in robotics technology have shifted 
the focus from supporting humans in industrial productivity (e.g., industrial robots, mobile 
agents) to supporting humans at a more personal level (e.g., companion robots, personal 
agents). One reason for this expansion may be the fact that many technological artifacts 
(e.g., humanoid robots, computer agents) now display biologically inspired human-like 
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features and physical human behaviors that elicit social responses. Strong social 
metaphors enable students to share knowledge and build peer-like relations. Pedagogical 
agent programs can engage in contingent social dialog for a long time. The effects of 
socialness on learning are readily attributed to the timing and quality of information 
delivery, which computers can largely mimic and control in targeted ways (Kanda, Hirano, 
Eaton, & Ishiguro, 2004; Breazeal, Dautenhahn, & Kanda, 2016). Robots and agents are 
highly directable, and can create ideal circumstances that enable new ways for students 
to reflect, reason, and learn.   

Collaborative learning with robots and agents is complex, as social metaphors are 
used to elicit engagement, and learning conditions are structured to induce cognitive 
processes in individuals and groups (Perret-Clermont, Perret, & Bell, 1991). This area of 
research may best be described along two continuums, the level of social metaphor, and 
who the targeted learner is (i.e., self, self-other, other). The amount of social interaction 
and verbal dialogue may differ based on the amount of social metaphor present and who 
the target learner is (self, self and other, or other). The next few sections will take a closer 
look into the collaborative learning processes and learning mechanisms that emerge from 
these interactions. Figure 1 attempts to position some of the work introduced in this 
chapter along these two continuums (i.e., social metaphor and target learner). Although 
some of the research introduced may not directly involve physical robots, the 
arrangements can be generalized to human-agent interactions, as much of the research 
and development with robots begins with human-modeled computer systems and virtual 
agent simulations.  

Social Metaphors 
Pedagogical agents with human-like appearances can be categorized according to the 
extent to which they include representations of social metaphors. We use the term 
“representations” because they are not mental models; they simply use technology to 
mimic schemas presumed to be present in the cognition of the humans with whom they 
interact. We call those representations social metaphors. However, as mentioned in an 
earlier section, not all technologies put the emphasis on direct social exchange with 
humans (e.g., industrial robots). Most fall somewhere in-between, and participate in both 
machine-like and human-like features. 

It is important to note that direct interactions between an artifact and a user can 
occur without any real social elements. Socially indifferent systems usually have no social 
functions, social interests, or social abilities as part of human-machine interactions (e.g., 
statistical applications, word processors, industrial robots). Early examples of socially 
indifferent machines that assisted learner performance were the Testing Machine 
(Pressey, 1932) and the Teaching Machine (Skinner, 1986) mentioned earlier. Skinner’s 
Teaching Machine taught arithmetic: a sequence of math problems appeared on top of a 
machine box and guided the learner through programmed instruction. Even though both 
the testing and teaching machines had no social elements, they were somewhat 
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successful in teaching mathematics to elementary, secondary, and college mathematics 
students. Modern robotic construction kits may also fit into this category, as children build 
and interact with concrete objects with no social elements, but still learn how gears, 
motors, and sensors work.  

 
Fig. 1 Pedagogical robots and agents along social metaphor and target learner 
continuum.  
  
Socially implicit systems draw on social patterns of interaction without trying to lead the 
learner to presume that they (i.e., the system) thinks like humans. Computer tutors, for 
example, incorporate interaction patterns known to be effective for tutoring, but they 
usually have a command-line interface and very little, if any, visual representation of an 
animated tutor character (Pane, Griffin, McCaffrey, & Karam, 2014). Anderson, Corbett, 
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Koedinger, and Pelletier (1995) developed the Cognitive Tutor, an intelligent tutoring 
system and computational model that represented student thinking and cognition. The 
Cognitive Tutor contained a computational model representing student thinking and 
cognition, but the tutor, itself, appeared as disembodied text with no visual character 
(Anderson, Boyle, & Reiser, 1985). 

Other systems build on explicit social metaphors of interaction and appearance 
that invite social interaction. Socially explicit systems consist of features that try to cue 
learners to think of social interaction, such as having an animation character interact with 
the student (Mayer & DaPra, 2012) or embodied conversational agents engaging in 
literacy learning with children (Cassell, Tartaro, Rankin, Oza, & Tse, 2007). Socially 
explicit systems usually consist of features that maximize social metaphors and 
perceptions of social presence to enable an affective social interaction to take place. For 
example, Honda’s humanoid robot exhibits human-like movements and appearance, but 
also includes implicit features from cognitive models that invite social interactions (Ng-
Thow-Hing et al., 2009). Robots in the socially indistinguishable category utilize extensive 
human mimicry. The social metaphor at this level usually involves high-fidelity 
appearance and behavior. A good example of this is the robots of Hiroshi Ishiguro (2007), 
who has been developing androids (i.e., realistic human-like robots) he calls “geminoids” 
and “actroids” that look and behave (almost) human. Mori’s work on the uncanny valley 
indicates that the challenge in future development is to achieve total human mimicry 
(Mori, 1970). While androids are quite common in science fiction, material and design 
challenges still need to be resolved before they can become widely used in the real world. 
However, such ideas are starting to be tested in classrooms (Hashimoto, Kato, & 
Kobayashi, 2011).  
 
Learner-centered interactions with and between pedagogical agents 
Social interaction has been found to be quite effective in peer tutoring (Roscoe & Chi, 
2007; Chi, Siler, Jeong, Yamauchi, & Hausmann, 2001; Graesser, Person, & Magliano, 
1995), reciprocal teaching (Palincsar & Brown, 1984), and behavior modeling (Anderson 
et al., 1995). Underlying these approaches is the view that individual cognition is shaped 
through social interactions and verbal dialogue plays a special role in learning and 
cognition (Wertsch, 1979).  Such forms of collaborative learning are often seen as an 
optimal way to help people learn (Chi et al., 2001). While direct “in-person” human 
facilitation can indeed be effective, finding a peer learner that is a good match for learners 
with specific needs can be a challenge (Mandl & Ballstaedt, 1982). Human tutors that do 
not have the appropriate metacognitive abilities (e.g., unable to accurately monitor their 
pupils’ understanding), skills, and patience, can negatively impact the tutee’s learning 
outcomes (Chi, Siler, & Jeong, 2004).  

One way to overcome the limitations of human peers is to involve computerized 
people (e.g., pedagogical agents and avatars) and/or computerized instructions (e.g., 
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intelligent tutoring systems). Implementing teaching and tutoring strategies into 
technology has led to the development of pedagogical computer agents (Baylor, 2007). 
Like a human peer, a computerized peer can have limitations. The human learner may 
oftentimes be constrained by what the computerized peer agent or environment can do 
in response. However like a human peer, observing a computer-controlled agent, under 
peer tutoring circumstances, may trigger similar learning and reflection. The use of social 
metaphors and schemas makes interactions with humans more original and motivating 
(Bailenson, 2012; Baylor, 2007).  When social metaphors in technology are combined 
with empirically supported learning methodologies and dialogic instructional repertoires, 
strong collaborative learning with and between students can occur with pedagogical 
agents.  

Individual Self-Learning. There are several processes at work when individuals engage 
in self-learning. Some of the mechanisms involve students monitoring their own 
understanding through self-reflection, monologic reasoning, and self-regulation.  
Technological artifacts (i.e., pedagogical agents and robots) can provide a safe 
environment for students to externalize their own thought processes onto an artifact to 
make their thoughts more accessible for personal reflection (Shneiderman, 2007; Okita, 
2014; Schwartz et al., 2009).  For example, the Teachable Agent system (Biswas, 
Leelawong, Schwartz, Vye, & TAG-V, 2005; Schwartz et al., 2009) takes students’ vague 
mental conceptualizations of a topic area, and produces more concrete representations 
using visualization tools (i.e., electronic concept map called Betty’s Brain), which is 
interpreted and explored by the pedagogical agent. This allows the learners to reflect and 
structure their thoughts through social interactions with the agent, which in turn influences 
the development of metacognitive skills (Schwartz et al., 2009). 

While “collaborative dialogue with oneself” may sound puzzling, “conflict with 
oneself” may sound more familiar (Dillenbourg, 1999). As explored by Mead (1934) and 
Vygostky (1978), thinking can be viewed as an internalized dialogue with oneself (e.g., 
self-regulation, self-explanation, cognitive conflict).  Self-explanation is a process 
whereby students explain to themselves or externalize their knowledge or understanding 
in the form of verbal utterances (Chi, Bassok, Lewis, Reimann, & Glaser, 1989). Early 
automated instructions involved pedagogical agents and chatbots that helped scaffold 
students’ verbal reasoning through questions that elicited explanations from students 
(Stevens & Collins, 1977). Through self-explanations, students "fill in" missing or not yet 
understood parts of phenomena (i.e., knowledge integration) in order to provide a 
complete explanation. King (1999) found that when students were trained to use such 
self-regulation techniques to monitor their own understanding, they were more effective 
at problem solving than students who were not trained. Learning by explaining to oneself 
has received great attention in machine learning (Mitchell, Keller & Kedar-Cabelli, 1986) 
and in cognitive modeling (VanLehn, Jones, & Chi, 1992).  
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Self-learning can involve both indirect and direct interactions with others, where 
the interaction can shift back and forth between monologic and dialogic interactions, but 
still focus primarily on individual self-learning. Interactions that involve the “thought of 
others” or the “anticipation of a social interaction” has led to learning with pedagogical 
agents and avatars (Okita, Bailenson, & Schwartz, 2007). Studies have found that asking 
students to “prepare to teach” can lead to more learning compared to students who are 
asked to study for themselves (Bargh & Schul, 1980). The mere presence of others or 
studying among peers can also be useful in learning. Learning can occur by comparing 
ourselves to peers or observing others to develop a better understanding of the self. Even 
if a student cannot solve a math problem, observing someone else may help. This is 
because the person they are observing can provide a model of competent performance. 
Self-reflection while problem solving is challenging because of the cognitive demand of 
solving the problem and simultaneously reflecting on one’s own performance (Gelman & 
Meck, 1983). A projective pedagogical agent, “ProJo,” was designed to openly display its 
reasoning when solving math problems. This relieved the cognitive load and allowed 
learners to monitor ProJo and “look for mistakes” (Okita, 2014). The additional benefit of 
monitoring the work of others for mistakes is located in the act of wrestling with potentially 
inferior solutions (Kruger, 1993). ProJo is based on the premise that externally monitoring 
the reasoning of a pedagogical agent's problem solving can help students turn their 
monitoring skills inward, and eventually self-correct when solving math problems 
(Karmiloff-Smith, 1979). 

Learning by Teaching (LBT) through Teachable Agents has created an ideal 
situation for self-learning, where the student takes on the role of a peer tutor and teaches 
a computerized pupil agent (Bargh & Schul, 1980; Leelawong & Biswas, 2008; Biswaset 
al., 2005). LBT consists of a phase that further shows desirable effects called Recursive 
Feedback (Okita & Schwartz, 2013), which refers to information that flows back to tutors 
when observing their pupils’ subsequent performance while interacting with others (e.g., 
football coach seeing his team competing out on the field). Tutors can map their 
understanding by observing how their pupils apply their teachings through interaction with 
others. Any discrepancies they notice leads to the realization that potential deficiencies 
in pupil understanding are not due exclusively to how the material was taught per se, but 
rather a lack of precision in the tutor’s own content knowledge. When studies compared 
human pupils to computerized pupil agents, similar results were found in a virtual reality 
environment (Okita, Turkay, Kim, & Murai, 2013).  

Self-learning can benefit from intelligent tutoring systems that use behavioral data 
of other students and instructors, even if they do not have direct contact with them. 
Research on intelligent model-based agents has focused on personalized instruction 
involving multifaceted systems that leverage rich models of students and pedagogies to 
create complex learning interactions. Systems such as Cognitive Tutors (Anderson et al. 
1995; Pane et al. 2014) have tens or hundreds of thousands of users, and have gathered 
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performance and behavioral data (e.g., how to teach, study what worked, when it worked), 
which has contributed to the design of current intelligent tutoring systems. Cognitive 
Tutors can provide support to and anticipate the student's thinking processes (VanLehn 
et al 2005) based on experiential data from other students, and model complex teacher 
and student pedagogical strategies (Heffernan & Koedinger, 2002). Research on 
intelligent tutoring systems has been successful at producing impressive technologies 
based on knowledge modeling with Bayesian Knowledge tracing and production-rule 
models to represent skills (Pane et al., 2014; Corbett, Koedinger, & Hadley, 2001). 

Self-learning can also have limitations. While elaboration of one’s own thinking is 
good for individual performance, ignoring the views of peers and their ideas can limit 
opportunities to reflect on and develop reasoning skills. Barron (2003) has found that this 
is especially true in group problem solving, where the absence of engagement with others’ 
reasoning, or the excessive use of one’s own thinking, can lead to poor overall group 
performance.  

Self-Other Learning. This section covers pedagogical agents and robots that focus on 
Self and Other’s learning, which is important in dyads, triads, and small group activities 
that involve more ideas and perspectives from the participants (i.e., learner and their 
peers). Self-Other learning with pedagogical agents often involves different discussion 
methods (e.g., “talk moves,” script-based, and dynamic dialogic instruction) that help set 
up systematic differences among learners and elicit rich interactions that improve 
students’ reasoning skills. Reasoning skills are developed through self-other interactions 
that trigger cognitive and socio-cognitive conflict, develop group knowledge integration, 
and build consensus from discussions (Kuhn, Zillmer, Crowell, Zavala, 2013).  

Early automated instructions with static interactions were limited in monitoring and 
responding to learners. These interactions eventually evolved into more elaborative 
speech acts that have social and intellectual functions (Greeno, 2015), and trigger 
cognitive processes through elaboration and self and other reasoning (Resnick, Michaels, 
& O’Connor, 2010). Speech acts like Accountable Talk moves scaffold collaborative 
knowledge building and reasoning and have been shown to support learning, long-term 
retention and development in reasoning. Pedagogical agents that elicit talk moves in a 
collaborative learning situation have been successful at producing similar performance 
effects (Adamson, Dyke, Jang, Rosé, 2014; Dyke, Adamson, Howley, & Rosé, 2013). The 
pedagogical agent takes on a 'facilitator' role rather than a 'tutor' role, because the agent 
only minimally intervenes to scaffold group discussions with human peers (Dyke et al 
2013, Kumar, Rose, Wang, Joshi, & Robinson, 2007).  However, even minimal 
intervention of this kind (e.g., prompting a student to reason about their peers reasoning), 
carries both a conversational implicature whereby the student shares their thinking 
verbally with their peers, as well as a cognitive implicature – simply prompting the target 
student to reason by virtue of that request.  
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Script-based methods (Dillenbourg, 1999; Kollar, Fischer, & Hesse, 2006; Kobbe 
et al., 2007) comprise different scaffolding techniques that involve structuring tasks into 
phases, introducing interaction rules, or employing role playing during collaborative 
interactions. A script can be used to define a wide range of features in collaborative 
activities (e.g., methods, tasks, roles, timing, patterns of interactions). Static scripts 
provide the same support for all participants, regardless of participant behavior during a 
collaborative interaction. Dynamic scripts provide a different response tailored to a 
participant’s or group’s performance or context of discussion as it unfolds. Scripts with a 
strict model can easily be encompassed in the design of the agent system, and may use 
dialogues intended to be adopted by the participants (e.g., “follow me” style prompts) to 
more subtle suggestions of behavior (e.g., “Each come up with three ideas, then discuss 
the ideas as a group”). Strict scripts can minimize the gap in group learning experience 
and performance and establish uniformity in discussions between the groups.  Such semi-
structured interfaces that include pre-defined scaffolds have helped grouped students to 
focus more on the task and produce less off-task comments (Baker & Lund, 1996). Over-
scripting can have negative implications by limiting the creative thought process and the 
contributions students can make (Dillenbourg & Hong, 2008).  

Over the years there has been more interest in dialogue-rich instruction that 
involves dialogue with discussants who engage students in inter-mental reasoning 
processes. In inter-mental reasoning processes students explain, reflect upon, and 
elaborate on their own and their peers’ understanding of domain concepts, and 
collaboratively engage in a sense-making process (Clarke, Resnick, & Rosé, 2015). 
Engaging in dialogue with another creates conditions for challenges, disagreements, and 
contradictions of opinions and ideas.) This process can lead to cognitive restructuring 
where students begin to integrate new perspectives into their own understanding (Kruger, 
1993). Early pedagogical agents that use dialogic instruction have been programmed to 
elicit conceptual depth by using generic prompts that encourage learners to articulate and 
elaborate their own lines of reasoning and to challenge and extend the reasoning of their 
peers. Recently, more dynamic dialogical instructions support learners by adapting the 
strategy by taking into account emergent characteristics of a discussion. Pedagogical 
agent systems, also referred to as “Tutorial Dialogue Agents,” help lead students through 
directed lines of reasoning to construct their conceptual development from the Knowledge 
Construction Dialogues developed by Rose and VanLehn (2005). Dynamic dialogical 
instruction engages the group in a dynamic interchange of input by producing and 
receiving ideas, and negotiating for meaning. Tutorial dialogue agents are interactive, and 
have the ability to conduct multi-turn directed lines of reasoning with students who 
respond to their prompts (Kumar & Rose, 2011). A notable framework, Academically 
Productive Talk (APT), is used to elicit rich interactions (Kumar et al, 2007) and can be 
triggered through real-time analysis of collaborative discussions (Dyke et al 2013; Kumar 
et al, 2007, 2010). Students using tutorial dialogue agents with APT have engaged in 
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directed lines of reasoning that have led to significantly more learning than those with no 
support. Studies have found a number of important mechanisms in dialogue-rich 
discussions or dialogic instruction where individuals articulate their thinking, listen to their 
peers, and try to negotiate meaning while integrating their input.  
           Where this kind of agent might be particularly useful is in augmenting a teachers’ 
facilitation of face-to-face whole class discussions. Several studies have documented 
how rare it is to find classrooms where teachers lead students in rich discussions of this 
kind (Kane & Staiger, 2012; Pimentel & McNeil, 2013). In addition, few professional 
learning interventions have been successful in supporting teachers in learning how to 
facilitate discussions that engage students in deep reasoning and argumentation (Clarke 
et al., 2013). Studies have documented that teachers rarely use probing questions or help 
students think with peers during classroom discussions (Pimentel & McNeil, 2013). Thus, 
effective tools/methods aimed at improving teachers' classroom talk skills are in much 
demand and can support teachers in facilitating discussions that support learning 
(McLaren, Scheuer, Miksako, 2010 p. 387). Tutorial dialogue agents can be useful for 
pre-service and in-service teachers in managing group collaborative interactions in the 
classroom and monitoring the interactions occurring in different places and/or at different 
times. Not only is initiating small groups of students into dialogic discussion practices 
using computer support beneficial, but the findings also show that dynamic support by 
tutorial dialogue agents poses positive effects on teacher uptake of dialogic facilitation 
practices in classroom discussions (Clarke et al., 2013).  

Others’ Learning. Pedagogical agents can also provide information on “others’ learning” 
to help people such as teachers and parents make instructional decisions, select 
appropriate course content, and monitor academic performance. Applying algorithms 
such as Bayesian Knowledge Tracing (BKT) to intelligent tutoring agents can model the 
learner’s mastery of knowledge, and predictive analytics can identify potential struggles 
students may have (Corbett & Anderson, 1995).  While such interventions are 
sophisticated and prescriptive (i.e., an automated system taking specific action to a given 
situation), there are challenges in accommodating the effects of human intervention (e.g., 
teachers taking action after seeing student performance) in the system’s automated 
instruction process.  

Studies have also found that teachers and parents tend to favor technology that 
depends more on simple and straightforward heuristics to assess student mastery (e.g., 
Get three in a row right, move to next level) (Heffernan & Heffernan, 2014).  Another 
approach is to use information on others’ learning to provide useful descriptive information 
to a third party (i.e., teachers and parents).  Recent open-learner models and reporting 
systems use educational data mining and learning analytic methods to extract important 
information and present data using visualization techniques to indicate student progress 
and behavior.  Instead of having the system make the decision, the system uses 
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information from others’ learning to present options for teachers and parents from which 
they can make intelligent informed decisions (Baker, 2016).  

The Purdue Course Signal System (Arnold & Pistilli, 2012) offers predictive 
analytics in student success and early warnings for instructors when a student is at risk. 
Course Signals attempts to scaffold effective practice by suggesting actions to instructors 
based on student performance and behavior. In ASSISTments, teachers examine 
student’s interaction data and performance reports on assignments, to design next day 
lectures, and better predict exam outcomes (Feng, Heffernan & Koedinger, 2009; 
Heffernan & Heffernan, 2014). ASSISTments all provide extensive professional 
development for teachers to share and disseminate effective practices. The S3 project 
(Tissenbaum & Slotta, 2019) allows teachers to monitor ongoing student activities through 
software agents that process student interactions in real time. This allows teachers to 
receive notifications that help orchestrate student groups, dynamically control classroom 
flow, and allocate necessary resources to students in a timely manner. Other systems 
have also made available to instructors real-time information on student participation 
through chat messages, so instructors can take immediate action to improve the 
collaborative discussions among students (Van Leeuwen et al., 2014). 

Linking Theory to Practice using Robots and Agents in Learning 
Some have argued that by making machines smarter, good teaching and tutoring 
strategies can be implemented, and thus more learning will occur. Intelligent agent 
systems and robots alone do not guarantee learning, and we would argue that they should 
not be considered the panacea for supporting collaborative learning either. They cannot 
replace the intelligence of a teacher, but when deployed strategically the affordances of 
these technologies can foster processes of collaboration and thinking practices that are 
supportive of individual and collaborative learning.  

Other factors can influence learning (e.g., motivation, engagement, trust) and 
application in classrooms. Learners may not understand sophisticated artifacts; thus, they 
may not trust them or may over trust them by attributing too much intelligence to them. 
Also, some worry that making learners too dependent on sophisticated features will cause 
them to cease acting, thinking, and learning independently and depend on machines to 
make decisions for them (advice giver, expert system, information system management). 
According to Salomon, Perkins, and Globerson (1991), student performance with 
technology can be assessed in two ways. One is the way students perform while equipped 
with or interacting with technology. Usually, this means that technology plays a significant 
part in the cognitive process that students would usually have to manage manually on 
their own. Just handling a computer-based tool with no guidance can make the user 
(teacher or student) lapse into meaningless activities. A positive impact of interaction with 
these computer-based tools would be lasting cognitive changes that equip students with 
thinking skills, depth of understanding, and strategies to continue solving math problems 
(e.g., similar to internalizing the abacus) even when away from technology.  



To Appear in: Cress, U., Oshima, J., Rosé, C., & Wise, A. (Eds.). (in press). International Handbook of Computer-Supported 
Collaborative Learning. Berlin: Springer ISBN 978-3-030-65291-3. 

Dialogic instruction has been shown to support learning, retention, and reasoning 
development, and has made this form of instruction a widespread practice that is 
promising; however, scaling this practice is not easy. Training teachers to use dialogic 
instructions effectively is a challenge, especially in low-performing schools (Clarke et al., 
2013). Despite the decades of work on knowledge modeling in Intelligent Tutoring 
Systems, the approaches favored in practice (or at scale) are fairly simple (Heffernan & 
Heffernan, 2014). It is difficult for a pedagogical agent to recognize that an intervention is 
not working as students adapt faster than automated systems. It is not that such changes 
and updates are impossible, but they take time and require constant attention. Humans 
are flexible and intelligent, but going through large amounts of information takes time. 
Baker (2016) suggests that rather than building sophisticated intelligent tutors, tools need 
to be designed more intelligently using Educational Data Mining (EDM) and Learning 
Analytics to augment human cognitive abilities and performance.  

Future Prospects of Robots and Agents in Education 
In this chapter we examined how social metaphors in robot and agent technology, 
combined with learning theories and methodologies, reveal powerful learning 
partnerships and new insights into the role of social relationships in learning. Winograd 
and Flores (1986) remind us that people develop tools, but tools need to be refined and 
used by intelligent individuals based on practice. There is much educational research that 
looks into developing guidelines for practice and design (Bransford et al., 2010) and 
educational data mining methods (e.g., learning decomposition) that show strategies that 
work (Beck & Mostow, 2008). By identifying the kinds of practices that research suggests 
are successful, we can work to maximize benefits from technology (pedagogical agents 
and robots, and robotic systems). Salomon et al. (1991) remind us that cognitive effects 
gained through technology depend greatly on the meaningful engagement of learners in 
the tasks afforded by these technological artifacts. It is essential to design a collaborative 
learning relationship with pedagogical robots and agents that do not cease independent 
thinking but promote lifelong learning.  
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Additional Reading 
 

Johnson, W. L., & Lester, J. C. (2018). Pedagogical Agents: Back to the Future. AI Magazine, 
39(2), 33-44. 
  
Johnson and Lester revisit their 2000 survey on research pedagogical agents - agents that engage 
with humans to support their learning. In the (Johnson, Rickel & Lester, 2000). In this 2018 update, 
they revisit their 2000 predictions for developments in the area of pedagogical agents, and consider 
the current state of the art. This article provides a survey of pedagogical agents developed over 
the last 20 years, classified in terms of the ways in which they engage with humans to support 
learning. In addition to examples of pedagogical agents, this article discusses the underlying 
technological architecture that has been driving developments of pedagogical agents.  

 
Le, N. T., & Wartschinski, L. (2018). A Cognitive Assistant for improving human reasoning skills. 
International Journal of Human-Computer Studies, 117, 45-54. 
  

This article reports on an evaluation of LIZA, an adaptive conversational agent that interacts with 
humans through text-based natural language processing. Le and Wartschinki examine whether 
engaging with Liza increases a humans’ skill of reasoning through discussions about reasoning, 
heuristics and biases.  This article provides an example of a system as a thought partner for solving 
problems. In addition, this articular of how a system’s mimicry of human-like interaction through 
natural conversation, can elicit cognitive processes of humans that are productive for learning.  
Shiomi, M., Kanda, T., Howley, I., Hayashi, K., & Hagita, N. (2015). Can a social robot stimulate 
science curiosity in classrooms?. International Journal of Social Robotics, 7(5), 641-652. 
  
This article reports on a field study of Robovie in an elementary school. Robovie is a social robot 
designed to socially engage with children. In this study, the researchers explored how social 
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interaction with Robovie about science might stimulate children’s interest and curiosity about 
science. This article provides a concrete application of the use of robots as a collaborative learning 
partner in schools and an evaluation of its affordances for development interest in science.  
 

Timms, M. J. (2016). Letting artificial intelligence in education out of the box: educational cobots and smart 
classrooms. International Journal of Artificial Intelligence in Education, 26(2), 701-712. 

 
This article invites the field of artificial intelligence in education to imagine systems that are 
purposefully designed for teaching and learning, rather than adapting systems from business 
industries to support teaching and learning. In proposing the former, the author invites the field to 
imagine the kind of technological support for teaching a teacher might desire, and the kind of 
technological support for learning a student might desire. This article identifies some of the 
constraints of off the shelf systems for pushing the field forward in terms of designs for supporting 
teaching and learning. 

 
 
Wise, A. F., & Schwarz, B. B. (2017). Visions of CSCL: Eight provocations for the future of the field. 

International Journal of Computer-Supported Collaborative Learning, 12(4), 423-467. 
 

This article presents a series of questions and tensions for the field of CSCL to wrestle with, or 
perhaps reconcile, for future research and development.  Amongst these questions and tensions 
are several issues at the edge of current research and development on robots and agents. This 
article is useful for identifying potential new directions for designing robots and agents for 
collaborative support of learning.    


